Десятичная дробь - Definition. Was ist Десятичная дробь
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Десятичная дробь - definition

Периодическая дробь; Десятичные дроби; Бесконечная десятичная дробь; Бесконечная дробь; Периодические десятичные дроби; Период (дробь); Периодическая десятичная дробь; Преобразование периодической десятичной дроби в обыкновенную; Десятичная запись

Десятичная дробь         

дробь, знаменатель которой есть целая степень числа 10. Д. д. пишут без знаменателя, отделяя в числителе справа запятой столько цифр, сколько нулей содержится в знаменателе. Например,

В такой записи часть, стоящая слева от запятой, обозначает целую часть дроби, первая цифра после запятой - количество десятых долей, вторая - количество сотых и т.д. Десятичная запись рациональных чисел, знаменатель которых не имеет других простых множителей, кроме 2 и 5, содержит конечное количество цифр (например, 4/25 = 0,16); в общем случае цифры в десятичной записи рационального числа, начиная с некоторого места, периодически повторяются (такое число представляется бесконечной периодической дробью (См. Периодическая дробь), например, 7/6 = 1,1666...); иррациональные числа представляются непериодическими бесконечными десятичными дробями, например

Во всех случаях Д. д. akak-1... a0, b1b2... может быть записана в виде:

где ак, ak-1,..., a0, b1, b2,... - цифры 0, 1, 2,..., 9 (ak ≠ 0) в соответствующем разряде числа; например

т. е. здесь a2 = 3, a1 = 8, a0 = 2, b1 = 1, b2 = 2, b3 = 7, b4 = 4. Д. д. применялись уже в 14-15 вв. Самаркандский математик аль-Каши в 1427 описал систему Д. д. В Европе Д. д. ввёл в употребление С. Стевин (1584.)

ДЕСЯТИЧНАЯ ДРОБЬ         
дробь, знаменатель которой - целая степень 10 (напр., 1/10 ? 0,1, 909/100 ? 9,09).
БЕСКОНЕЧНАЯ ДЕСЯТИЧНАЯ ДРОБЬ         
десятичная дробь, в записи которой после запятой содержится бесконечное количество цифр.

Wikipedia

Десятичная дробь

Десяти́чная дробь — разновидность дроби, которая представляет собой способ представления действительных чисел в виде

± d m d 1 d 0 , d 1 d 2 {\displaystyle \pm d_{m}\ldots d_{1}d_{0}{,}d_{-1}d_{-2}\ldots }

где

± {\displaystyle \pm }  — знак дроби: либо + {\displaystyle +} , либо {\displaystyle -} ,
, {\displaystyle ,}  — десятичная запятая, служащая разделителем между целой и дробной частью числа (стандарт стран СНГ),
d k {\displaystyle d_{k}}  — десятичные цифры. Причём последовательность цифр до запятой (слева от неё) конечна (как минимум одна цифра), а после запятой (справа от неё) — может быть как конечной (в частности, цифры после запятой могут вообще отсутствовать), так и бесконечной.

Примеры:

  • 123 , 45 {\displaystyle 123{,}45} (конечная десятичная дробь)
  • Представление числа π {\displaystyle \pi } в виде бесконечной десятичной дроби: 3,141 5926535897... {\displaystyle 3{,}1415926535897...}

Значением десятичной дроби ± d m d 1 d 0 , d 1 d 2 {\displaystyle \pm d_{m}\ldots d_{1}d_{0},d_{-1}d_{-2}\ldots } является действительное число

± ( d m 10 m + + d 1 10 1 + d 0 10 0 + d 1 10 1 + d 2 10 2 + ) , {\displaystyle \pm \left(d_{m}\cdot 10^{m}+\ldots +d_{1}\cdot 10^{1}+d_{0}\cdot 10^{0}+d_{-1}\cdot 10^{-1}+d_{-2}\cdot 10^{-2}+\ldots \right),}

равное сумме конечного или бесконечного числа слагаемых.

Представление действительных чисел с помощью десятичных дробей является обобщением записи целых чисел в десятичной системе счисления. В представлении целого числа в виде десятичной дроби отсутствуют цифры после запятой, и таким образом, это представление имеет вид

± d m d 1 d 0 , {\displaystyle \pm d_{m}\ldots d_{1}d_{0},}

что совпадает с записью этого числа в десятичной системе счисления.